

EVM-IMX8MM 主板数据手册

产品介绍

EVM-IMX8MM 主板为 Core-IMX8MM 系列核心板的评估底板,以方便用户评估核心板及 CPU 的性能。

EVM-IMX8MM 主板基于 i.MX8M Mini 处理器,内部集成了电源管理、安全单元和丰富的互联接口,拥有高性能、低功耗、灵活的内存选项和高速接口以及业界领先的音视频功能,适用于从消费家庭音频到工业楼宇自动化及移动计算机等广泛应用。

广州眺望电子同时为客户提供系统级解决方案,提供基于 Linux、Android 操作系统的丰富的软件开发资料,并提供上门技术支持服务。

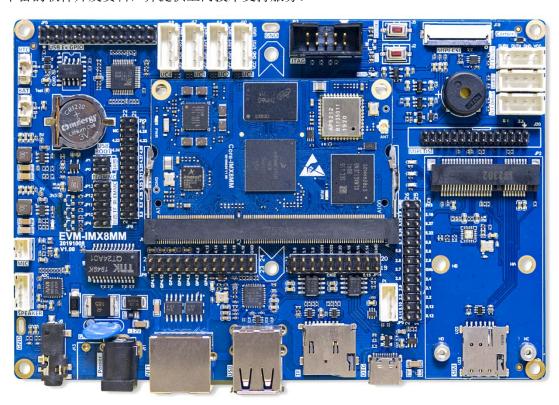
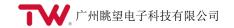
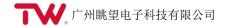
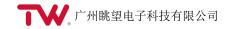



图 1.1 EVM-IMX8MM 主板正视图

注意: 图片仅供参考, 以实际销售产品为准


产品应用

- ◆ 工业自动化
- ◆ 人机界面
- ◆ 物联网
- ◆ 分布式数据采集终端


修订历史

版本	日期	原因	修订者
V1.00	2020/3/5	创建文档	赵金生

目 录

1.	产品管	简介		1
	1.1	产	品特性	1
	1.2	碩	更件参数	1
2.	硬件	参数		3
	2.1	Ð	不境参数	3
	2.2	ŧ	电源电气参数	3
	2.3	I	O 电气参数	3
	2.4	R	RTC 参数	3
	2.5	Е	EMC 参数	4
3.	EVM-	IMX8	8MM 主板入门说明	5
	3.1	技	妾口布局	5
	3.2	凶	兆线使用说明	5
	3.3	指	指示灯运行说明	5
4.	接口证	兑明		6
	4.1	ŧ	电源接口	6
	4.2	ŧ	电源开关	6
	4.3	_	夏位按键	
	4.4	7 E	显示接口	
	4	4.4.1		
		4.4.2	2722 2 002 \$	
	4.5		以太网接口	
	4.6	U	JSB 接口	
	•	4.6.1	USB 2.0 Host 接口	
	4	4.6.2	USB 接口 P1	
		4.6.3	USB-OTG-TypeC 接口	
	4.7		TAG 接口	
	4.8		J ART 接口	
	4.9	_	麦克风接口	
	4.10		音频接口	
	4.11		[F 卡接口	
	4.12		G 模块	
	4.13		SIM 卡座	
	4.14		广展总线引脚定义	
		4.14.1		
	4.15		广展功能引脚	
		4.15.1	- · · · · · · · · · · · · · · · · · · ·	
_		4.15.2 - ⊞		
5.	典型原		O. Let 10, 1111	
	5.1		分析仪器	
	5.2	•	勿流投递柜	
	5.3)	人机界面	16

6.	机械尺寸	.17
7.	免责声明	.18

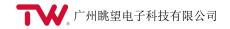
1. 产品简介

1.1 产品特性

EVM-IMX8MM 主板为 Core-IMX8MM 系列核心板的评估底板,以方便用户评估核心板及 CPU 的性能。

Core-IMX8MM 系列核心板基于 i.MX8M Mini 系列处理器,它支持 Linux 和 Android 操作系统,并支持智能 AI 算法加速功能。提供广泛的音频接口,支持摄像头接口、以太网、4G 扩展模块等。可以快速开发一系列最具创新性的应用,如人机界面、工业 4.0、扫描仪、车载终端以及便携式医疗设备。

1.2 硬件参数


EVM-IMX8MM 主板板载外设功能:

- 集成 1 路 10M/100M/1000M 自适应以太网接口
- 集成 1 路 MIPI CSI 摄像头接口
- 集成 1 路 MIPI DSI 显示接口
- 集成 2 路 USB 2.0 Host, 1 路 USB OTG TypeC
- 集成 1 路 Mini PCIe 接口
- 支持 多路音频输入、输出数字接口
- 支持 1 路 TF 卡接口
- 支持 1 路 SIM 卡接口
- 预留 3 路 UART 调试串口
- 支持 4G 模块扩展
- 支持实时时钟与后备电池
- 支持板载蜂鸣器与 LED 指示灯
- 支持 GPIO 接口
- 直流+12V 供电

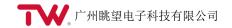

以下是 Core-IMX8MM 核心板的资源参数

表 1.1 硬件资源参数

产品名称	Core-IMX8MM 核心板
操作系统	Linux、Android
CPU	4×Cortex-A53 + Cortex-M4
主频	1.6GHz
LPDDR4	支持 1GB, 2GB 或更高
eMMC	4GB 以上或更高
显示分辨率	支持 1920*1080 分辨率
显示接口	1 路 4 通道 MIPI DSI
触摸屏	支持电阻式与电容触摸屏
音频接口	支持
摄像头	1 路 4 通道 MIPI CSI

USB	2 路 USB2.0 OTG
串口	4 路
以太网	1 路千兆以太网控制器
PCle	1 路
TF 卡接口	1 路
外部扩展总线	支持
I2C	4 路
SPI	3路
I2S/SAI	5路
GPIO	支持
PWM	4 路
JTAG	支持

2. 硬件参数

2.1 环境参数

表 2.1 工作环境参数

\$ # ₁		3H 00			
参数	最小	典型	最大	单位	说明
消费级	0	+25	+60	$^{\circ}$	
商业级	-20	+25	+70	$^{\circ}$ C	
工业级	-40	+25	+85	$^{\circ}\!\mathbb{C}$	

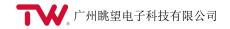
2.2 电源电气参数

表 2.2 电源静态电气参数

公 米h		规	格		说明	
参数	最小	典型	最大	单位	レズ ^ル ガ	
系统电压	8	12	15	V		
系统电流		500		mA	与板载外设的耗电有关系	

2.3 IO 电气参数

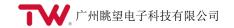
表 2.3 GPIO 静态电气参数


参数		规	格		说明
多奴	最小	典型	最大	单位	灰切
高电平输入电压	2.3		3.3	V	
低电平输入电压	0		0.3	V	
高电平输出电压	3.15			V	
低电平输出电压			0.15	V	

注意:GPIO 电压不能过高或者过低, 否则会导致 GPIO 的损坏。

2.4 RTC 参数

表 2.4 RTC 静态电气参数


参数	规格				说明
多奴	最小	典型	最大	单位	近 円
RTC 电压	2.4		3.3	V	RTC 电源输入
RTC 电流		0.8		uA	RTC 典型工作电流

2.5 EMC 参数

表 2.5 电磁兼容性能

项目		详细参数	说明		
坝日	接口	电压等级	放电方式	坂中月	
ESD	电源接口	8KV	接触式		
LOD	通讯接口	6KV	接触式	不包含 TTL 电平接口	
	电源接口	8KV	接触式		
EFT	通讯接口	6KV	接触式	不包含 TTL 电平接口	
ESD	带外壳	15KV	空气放电		

3. EVM-IMX8MM 主板入门说明

3.1 接口布局

EVM-IMX8MM 主板有丰富的外设接口,每个接口的布局如图 3.1 所示。

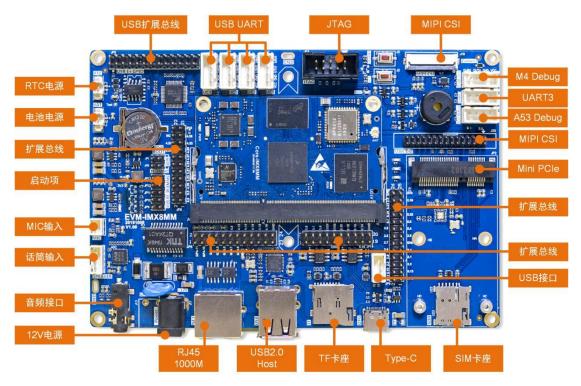


图 3.1 接口资源布局图

3.2 跳线使用说明

为了方便使用, EVM-IMX8MM 主板上放置了一些跳线。跳线的使用说明:

 功能描述
 使用说明

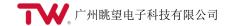
 USB
 短接:从USB启动;断开:从EMMC启动

TF/eMMC 短接:从TF卡启动;断开:从EMMC启动

表 3.1 跳线使用说明

3.3 指示灯运行说明

标号 JP0、JP1


JP4、JP10、JP11、JP12、JP13

EVM-IMX8MM 主板上放置了一些指示灯用于指示主板的运行状态。LED 灯的使用说明:

表 3.2 指示灯使用说明

标号	功能描述	描述	备注
LED2	5V 电源	亮: 主板 5.0V 正常; 灭: 主板 5.0V 电压异常	
LED3	HUB 指示灯	USB HUB 运行指示灯	
RUN	运行指示灯	闪亮: 主板 3.3V 运行正常; 灭: 主板运行异常	

备注

4. 接口说明

EVM-IMX8MM 主板搭载了丰富的交互接口,本章对每个接口进行介绍。

4.1 电源接口

EVM-IMX8MM 主板的输入电压为 12V,并具有防反接功能,电源接口的定义如图 4.1 所示,电路设计预留了 J6 和 J13 两种类型的插座。

图 4.1 电源接口

表 4.1 电源接口使用说明

管脚	标号	功能描述	使用说明	备注
1	P_VIN	电源正	输入电压 12V	
2	PE	外壳地	漏电保护接地,EMC 接地	
3	GND	电源负	负极电源	

4.2 电源开关

EVM-IMX8MM 主板支持按键关机的方式。EVM-IMX8MM 主板运行 Android 操作系统,建议客户通过按键实现关机功能。如图 4.2 所示,J5 位置可以通过 PH-2.0A 端子接一个按键装到外壳上。

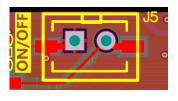


图 4.2 按键关机接口

4.3 复位按键

EVM-IMX8MM 主板支持按键复位的方式。如图 4.3 按键复位接口图 4.3 所示,该工位可以通过 PH-2.0A 端子接一个按键装到外壳上。

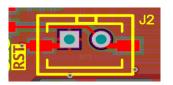
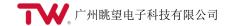



图 4.3 按键复位接口

4.4 显示接口

4.4.1 MIPI DSI 接口

EVM-IMX8MM 主板有一路 MIPI DSI 输出接口。如图 4.4 所示。

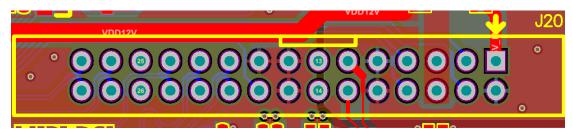


图 4.4 MIPI 输出接口

MIPI DSI 接口 J20 的管脚定义如表 4.2 所示。

序号	标识	功能说明	序号	标识	功能说明
1	5V_MIPI	电源 DC5V	16	GND	电源地
2	3V3_MIPI	电源 DC3.3V	17	GND	电源地
3	GPIO1_IO01	GPIO □	18	GPIO0_IO09	GPIO □
4	GPIO1_IO11	GPIO □	19	DSI_CLK_P	DSI_CLK_P 信号
5	12V_MIPI	电源 DC12V	20	DSI_CLK_N	DSI_CLK_N 信号
6	12V_MIPI	电源 DC12V	21	DSI_D0_P	DSI_D0_P 信号
7	GPIO1_IO10	GPIO □	22	DSI_D0_N	DSI_D0_N 信号
8	GPIO1_IO08	GPIO □	23	DSI_D1_P	DSI_D1_P 信号
9	3V3_MIPI	电源 DC3.3V	24	DSI_D1_N	DSI_D1_N 信号
10	GND	电源地	25	悬空	
11	I2C2_SCL	IIC 信号	26	悬空	
12	I2C2_SDA	IIC 信号	27	DSI_D2_P	DSI_D2_P 信号
13	悬空		28	DSI_D2_N	DSI_D2_N 信号
14	悬空		29	DSI_D3_P	DSI_D3_P 信号
15	GND	电源地	30	DSI_D3_N	DSI_D3_N 信号

表 4.2 MIPI DSI 输出接口 J20 使用说明

眺望电子有配套 DSI 接口的电容屏液晶套件,如果有需要可以联系我司的销售人员咨询。

4.4.2 MIPI CSI 接口

EVM-IMX8MM 主板有一路 MIPI CSI 输入接口 J19,如图 4.5 所示。

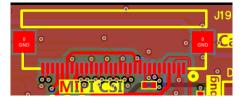


图 4.5 MIPI CSI 输入接口

表 4.3 MIPI CSI 输出接口 J19 使用说明

序号	标识	功能说明	序号	标识	功能说明
1	悬空		16	CSI_D2_N	CSI_D2_N 信号
2	GND	电源地	17	GND	电源地
3	I2C3_SDA	I2C3_SDA 数据信号	18	CSI_CLK_P	CSI_CLK_P 信号
4	2V8	电源 DC2.8V	19	CSI_CLK_N	CSI_CLK_N 信号
5	I2C3_SCL	I2C3_SCL 时钟信号	20	GND	电源地
6	GPIO1_IO06	GPIO □	21	CSI_D1_P	CSI_D1_P 信号
7	GPIO1_IO07	GPIO □	22	CSI_D1_N	CSI_D1_N 信号
8	GND	电源地	23	2V8	电源 DC2.8V
9	CIF_CLKO	CIF_CLKO 信号	24	GND	电源地
10	1V8	电源 DC1.8V	25	1V8	电源 DC1.8V
11	1V8	电源 DC1.8V	26	1V2	电源 DC1.2V
12	CSI_D3_P	CSI_D3_P 信号	27	3V3	电源 DC3.3V
13	CSI_D3_N	CSI_D3_N 信号	28	悬空	
14	GND	电源地	29	CSI_D0_P	CSI_D0_P 信号
15	CSI_D2_P	CSI_D2_P 信号	30	CSI_D0_N	CSI_D0_N 信号

眺望电子有配套 Mipi CSI 接口的摄像头套件,如果有需要可以联系我司的销售人员咨询。

4.5 以太网接口

EVM-IMX8MM 主板有一路千兆以太网接口 J6,使用标准的 RJ45 网口插座,插座内带状态指示灯。如图 4.6 所示。

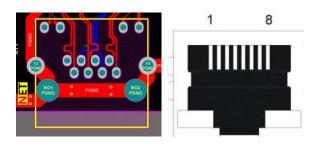


图 4.6 RJ45 网口插座

4.6 USB 接口

4.6.1 USB 2.0 Host 接口

EVM-IMX8MM 主板有 2 路 USB2.0 HOST 接口 CON5,使用标准的双层 USB-A 插座。如图 4.7 所示。



图 4.7 USB 插座

4.6.2 USB 接口 P1

EVM-IMX8MM 主板有一路 4P-USB 接口 P1, 使用标准的 PH2.0-4A 插座, 方便用户扩展接口。如图 4.8。

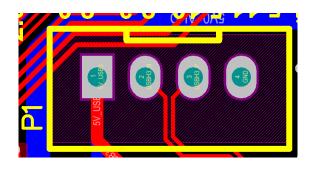


图 4.8

表 4.4 USB 接口 P1 使用说明

标号	功能描述	使用说明	备注
1	5.0V	电源正	电压 5.0V
2	USBH3_N	USBH3_N 信号	
3	USBH3_P	USBH3_P 信号	
4	GND	电源地	

4.6.3 USB-OTG-TypeC 接口

EVM-IMX8MM 主板有 1 路 TYPE-C 接口 CON4,使用标准的 TYPE-C 插座,该接口默 认为 Device 接口,如需要使用 HOST 功能,需要特制的 Type-C 转 Host 转接线。

4.7 JTAG 接口

EVM-IMX8MM 主板有 1 路 JTAG 接口 JP3,使用 IDC-10-2.54 插座。如图 4.9 所示。

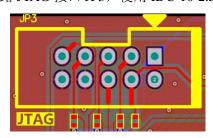
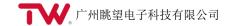



图 4.9 JTAG 接口 JP3

表 4.5 JTAG 接口 JP3 使用说明

序号	标识	功能说明	序号	标识	功能说明
1	3V3	3V 电源	6	JTAG_TDO	JTAG_TDO 信号
2	悬空		7	JTAG_TMS	JTAG_TMS 信号
3	JTAG_nTRST	复位信号	8	GND	电源地
4	J_nRST	复位信号	9	JTAG_TCK	JTAG_TCK 时钟信号
5	JTAG_TDI	JTAG_TDI 信号	10	GND	电源地

4.8 UART 接口

EVM-IMX8MM 主板有 3 路 UART 接口,

其中 1 路用为 A53_Debug 调试串口,标号为 J9;

1路为M4_Debug调试串口,标号为J3;

1 路为 UART3 串口,标号为 J4。如图 4.10。

UART 接口全部都可以用来作通信功能。

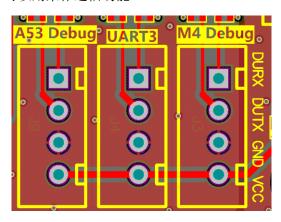


图 4.10 UART 调试接口 J3、J4、J9

表 4.6 UART 调试接口 J3、J4、J9 使用说明

序号	标识	功能说明	备注
1	DURX	调试串口输入信号, 3.3V 电平	
2	DUTX	调试串口输出信号, 3.3V 电平	
3	GND	电源地	
4	3.3V	电源正	输出电压 3.3V

4.9 麦克风接口

EVM-IMX8MM 主板 1 路 MIC 接口 J16 和 SPEAK 接口 J7。信号定义见图 4.11 所示。

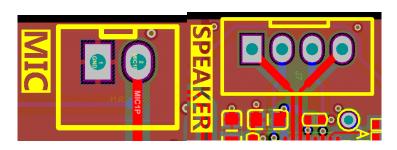


图 4.11 J16、J7 接口

表 4.7 接口 J16 和 J7 使用说明

引脚	网络标识	备注	引脚	网络标识	备注
J16_1	MIC1P		J7_1	SPK_LN	
J16_2	GND	地	J7_2	SPK_LP	
			J7_3	SPK_RN	
			J7_4	SPK_RP	

4.10 音频接口

EVM-IMX8MM 主板有 1 路 3.5mm, 音频接口 J8 如图 4.12 所示。

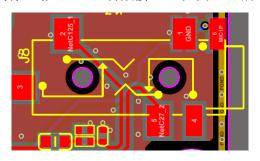


图 4.12 音频接口

4.11 TF 卡接口

EVM-IMX8MM 主板有一个标准的 TF 卡接口 J15, 用户可以用于存储数据。

4.12 4G 模块

EVM-IMX8MM 主板提供一个了 MiniPCIe 接口,内有 USB 信号和 PCIE 信号,兼容多品牌的 4G 模块。注意:USB 接口与 P1 插座共用 1 路 USB 信号。

4.13 SIM 卡座

EVM-IMX8MM 主板与 MiniPCIE 插座有一个配套的 SIM 卡座 U22。用户可以用于接入 SIM 卡。

4.14 扩展总线引脚定义

4.14.1 核心板功能引脚

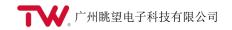

JP6、JP8、JP9、JP14 为预留功能引脚,因核心板功能接口丰富,受限于评估底板尺寸,部分功能通过插针引出,其物理形式为 2.54mm 间距双排排针,如图 4.13 所示。

图 4.13 排针模型(参考)

表 4.8 JP6 引脚定义

引脚	名称	说明	引脚	名称	说明
1	SAI1_TXC		2	SAI1_MCLK	
3	SAI1_TXFS		4	SAI1_RXFS	
5	SAI1_RXC		6	SAI1_RXD0	
7	SAI1_RXD1		8	SAI1_RXD2	
9	SAI1_RXD3		10	SAI1_RXD4	
11	SAI1_RXD5		12	SAI1_RXD6	
13	SAI1_RXD7		14	SAI1_TXD0	
15	SAI1_TXD1		16	SAI1_TXD2	
17	SAI1_TXD3		18	SAI1_TXD4	
19	SAI1_TXD5		20	SAI1_TXD6	

21	SAI1_TXD7	22	悬空	
23	BOT_3V3	24	GND	

表 4.9 JP8 引脚定义

引脚	名称	说明	引脚	名称	说明
1	SPDIF_EXT_CLK		2	SPDIF_RX	
3	SPDIF_TX		4	SAI3_RXC	
5	SAI3_RXFS		6	SAI5_DATA3	
7	SAI5_DATA2		8	SAI5_DATA1	
9	SAI5_DATA0		10	SAI5_RXC	
11	SAI5_MCLK		12	SAI5_RXFS	
13	SAI2_MCLK		14	SAI2_TXC	
15	SAI2_TXD		16	SAI2_TXFS	
17	SAI2_RXC		18	SAI2_RXD	
19	SAI2_RXFS		20	悬空	
21	BOT_3V3		22	GND	

表 4.10 JP9 引脚定义

引脚	名称	说明	引脚	名称	说明
1	ECSPI2_MISO		2	ECSPI2_MOSI	
3	ECSPI2_SS0		4	ECSPI2_SCLK	
5	SD1_DATA0		6	SD1_DATA1	
7	SD1_CMD		8	SD1_CLK	
9	SD1_DATA2		10	SD1_DATA3	
11	GND		12	BT_WAKE_DEV	
13	BT_REG_ON		14	BT_WAKE_HOST	
15	UART3_RXD		16	UART3_RTS	
17	UART3_CTS		18	UART3_TXD	
19	UART1_RXD		20	UART1_CTS	
21	UART1_RTS		22	UART1_TXD	
23	WL_REG_ON		24	WL_WAKE_HOST	
25	BOT_3V3		26	GND	

表 4.11 JP14 引脚定义

引脚	名称	说明	引脚	名称	说明
1	QSPIA_DATA0		2	QSPIA_SCLK	
3	QSPIA_DATA3		4	QSPIA_nSS0	
5	QSPIA_DATA1		6	QSPIA_DATA2	
7	CLKIN1		8	CLKOUT1	
9	CLKIN2		10	CLKOUT2	

11	I2C4_SDA	12	I2C4_SCL	
13	I2C3_SDA	14	I2C3_SCL	
15	I2C2_SDA	16	I2C2_SCL	
17	I2C1_SDA	18	I2C1_SCL	
19	BOT_3V3	20	GND	

4.15 扩展功能引脚

4.15.1 USB 扩展 GPIO

IMX8MM 的 CPU 自带 4 个串口,数量较少,因此使用 USB 扩展了 4 路串口,扩展芯片 XR21V1414 同时可以扩展 GPIO 口。通过 JP5 接口插针引出,其物理形式为 2.54mm 间距双排排针。

引脚	名称	说明	引脚	名称	说明
1	3V3_XRV		2	GND	
3	uart1_ri_n	GPIOA0	4	uart2_ri_n	GPIOB0
5	uart1_cd_n	GPIOA1	6	uart2_cd_n	GPIOB1
7	uart1_dsr_n	GPIOA2	8	uart2_dsr_n	GPIOB2
9	uart1_dtr_n	GPIOA3	10	uart2_dtr_n	GPIOB3
11	uart1_cts_n	GPIOA4	12	uart2_cts_n	GPIOB4
13	uart1_rts_n	GPIOA5	14	uart2_rts_n	GPIOB5
15	uart3_ri_n	GPIOC0	16	uart4_ri_n	GPIOD0
17	uart3_cd_n	GPIOC1	18	uart4_cd_n	GPIOD1
19	uart3_dsr_n	GPIOC2	20	uart4_dsr_n	GPIOD2
21	uart3_dtr_n	GPIOC3	22	uart4_dtr_n	GPIOD3
23	uart3_cts_n	GPIOC4	24	uart4_cts_n	GPIOD4
25	uart3_rts_n	GPIOC5	26	uart4_rts_n	GPIOD5

表 4.12 JP5 引脚定义

4.15.2 USB 扩展 UART

J10、J14、J17、J18 为 U3 芯片的 UART 串口,如图 4.14。UART 接口全部都可以用来作通信功能。

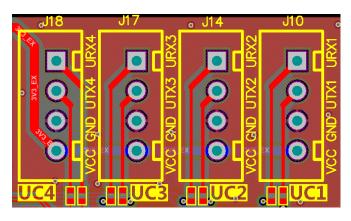
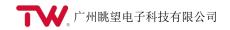
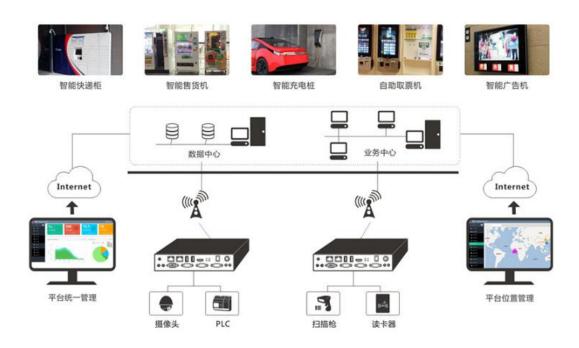



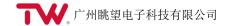
图 4.14 UART 调试接口 J10、J14、J17、J18

表 4.13 UART 调试接口 J10、J14、J17、J18 使用说明

引脚序号	网络标识	功能说明	备注
1	TX	调试串口输出信号,3.3V 电平	
2	RX	调试串口输入信号, 3.3V 电平	
3	GND	电源地	
4	3.3V	电源正	输出电压 3.3V

5. 典型应用




图 5.1 EVM-IMX8MM 的系统应用

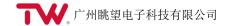
5.1 分析仪器

EVM-IMX8MM 主板集成了多种接口,可以应用在分析仪器上,并带有打印机输出接口。用户可以快速基于 android 系统开发应用,加速产品上市。该主板通过三类医疗检测设备认证,稳定可靠。

图 5.2 基于 EVM-IMX8MM 的分析仪器

5.2 物流投递柜

EVM-IMX8MM 主板接口丰富,工作稳定可靠。可以与柜体的控制单元可靠交互,并支持 21.5 寸大屏显示,用户操作更方便。


图 5.3 基于 EVM-IMX8MM 的物流柜操作界面

5.3 人机界面

在工业自动化领域,需要操作界面,只需要 EVM-IMX8MM 主板配上外壳,并适配应用程序,即可。

图 5.4 基于 EVM-IMX8MM 的工业自动化终端

6. 机械尺寸

EVM-IMX8MM 主板提供 dwg 格式的平面尺寸,方便用户工业设计,外围尺寸如图 6.1 所示。

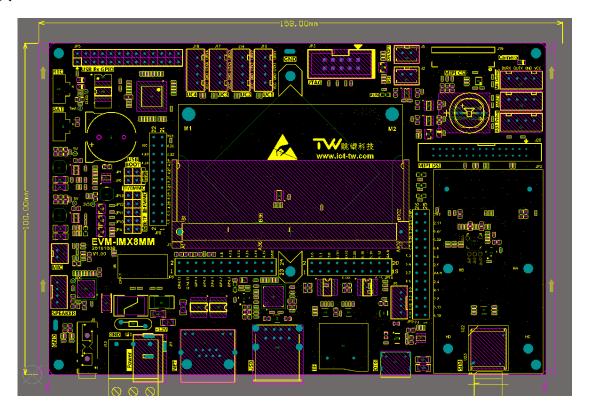
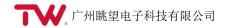



图 6.1 机械尺寸

7. 免责声明

本文档提供有关广州眺望电子科技有限公司产品的信息。本文档并未授予任何知识产权的许可,并未以明示或暗示,或以禁止发言或其它方式授予任何知识产权许可。

除眺望电子在其产品的销售条款和条件中声明的责任之外,眺望电子概不承担任何其它责任。并且,眺望电子对产品的销售和/或使用不作任何明示或暗示的担保,包括对产品的特定用途适用性、适销性或对任何专利权、版权或其它知识产权的侵权责任等,均不作担保。

眺望电子产品并非设计用于救生或维生等用途。眺望电子可能随时对产品规格及产品描述做出修改, 恕不另行通知。

在订购产品之前,请您与当地的广州眺望电子科技有限公司销售处或分销商联系, 以获取最新的规格说明。广州眺望电子科技有限公司保留所有权利。